Using compost instead of nitrogen as fertilizer in Canada can slow global warming

- EN - FR
 (Image: Pixabay CC0)
(Image: Pixabay CC0)
(Image: Pixabay CC0) - Greenhouse gas production is significantly less when biobased residues like compost replaces widely used nitrogen fertilizer during spring freeze-thaw events in cold temperate regions. A new study led from the University of Waterloo discovered greenhouse gas production is significantly less when biobased residues like compost replaces widely used nitrogen fertilizer during spring freeze-thaw events in cold temperate regions. "In cold temperate regions like Canada, spring freeze-thaw events contribute significantly to greenhouse gas production which further exacerbates climate change," said study lead Emmanuel Badewa, a PhD candidate from Waterloo's School of Environment, Resources and Sustainability (SERS).  "The premise of our study is that biobased residues, which are generated as the natural by-product of our lives and economy, have the potential to reduce global warming thanks to our highly variable spring freeze-thaw cycle-in Canada and across the temperate world." The research team from Waterloo and McGill University collected greenhouse gases-carbon dioxide, methane, and nitrous oxide-during the spring from a pilot study at Elora, Ontario research station. The site was selected due to its three transient spring freeze-thaw phases-waterlogged, wet, and dry.  "There is incentive for farmers in cold temperate regions that rely solely on nitrogen fertilizer for crop production to adopt biobased residues from food waste, biosolids from sewage sludges, digestate from plant materials," said Maren Oelbermann, a co-author from Waterloo.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience